complexobject.c 31.1 KB
Newer Older
1

2 3 4 5
/* Complex object implementation */

/* Borrows heavily from floatobject.c */

6 7
/* Submitted by Jim Hugunin */

8
#include "Python.h"
9
#include "structmember.h"
10 11 12

/* elementary operations on complex numbers */

Guido van Rossum's avatar
Guido van Rossum committed
13
static Py_complex c_1 = {1., 0.};
14

15 16
Py_complex
c_sum(Py_complex a, Py_complex b)
17
{
18 19 20 21
    Py_complex r;
    r.real = a.real + b.real;
    r.imag = a.imag + b.imag;
    return r;
22 23
}

24 25
Py_complex
c_diff(Py_complex a, Py_complex b)
26
{
27 28 29 30
    Py_complex r;
    r.real = a.real - b.real;
    r.imag = a.imag - b.imag;
    return r;
31 32
}

33 34
Py_complex
c_neg(Py_complex a)
35
{
36 37 38 39
    Py_complex r;
    r.real = -a.real;
    r.imag = -a.imag;
    return r;
40 41
}

42 43
Py_complex
c_prod(Py_complex a, Py_complex b)
44
{
45 46 47 48
    Py_complex r;
    r.real = a.real*b.real - a.imag*b.imag;
    r.imag = a.real*b.imag + a.imag*b.real;
    return r;
49 50
}

51 52
Py_complex
c_quot(Py_complex a, Py_complex b)
53
{
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    /******************************************************************
    This was the original algorithm.  It's grossly prone to spurious
    overflow and underflow errors.  It also merrily divides by 0 despite
    checking for that(!).  The code still serves a doc purpose here, as
    the algorithm following is a simple by-cases transformation of this
    one:

    Py_complex r;
    double d = b.real*b.real + b.imag*b.imag;
    if (d == 0.)
        errno = EDOM;
    r.real = (a.real*b.real + a.imag*b.imag)/d;
    r.imag = (a.imag*b.real - a.real*b.imag)/d;
    return r;
    ******************************************************************/

    /* This algorithm is better, and is pretty obvious:  first divide the
     * numerators and denominator by whichever of {b.real, b.imag} has
     * larger magnitude.  The earliest reference I found was to CACM
     * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
     * University).  As usual, though, we're still ignoring all IEEE
     * endcases.
     */
     Py_complex r;      /* the result */
     const double abs_breal = b.real < 0 ? -b.real : b.real;
     const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;

     if (abs_breal >= abs_bimag) {
        /* divide tops and bottom by b.real */
        if (abs_breal == 0.0) {
            errno = EDOM;
            r.real = r.imag = 0.0;
        }
        else {
            const double ratio = b.imag / b.real;
            const double denom = b.real + b.imag * ratio;
            r.real = (a.real + a.imag * ratio) / denom;
            r.imag = (a.imag - a.real * ratio) / denom;
        }
    }
    else {
        /* divide tops and bottom by b.imag */
        const double ratio = b.real / b.imag;
        const double denom = b.real * ratio + b.imag;
        assert(b.imag != 0.0);
        r.real = (a.real * ratio + a.imag) / denom;
        r.imag = (a.imag * ratio - a.real) / denom;
    }
    return r;
103 104
}

105 106
Py_complex
c_pow(Py_complex a, Py_complex b)
107
{
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    Py_complex r;
    double vabs,len,at,phase;
    if (b.real == 0. && b.imag == 0.) {
        r.real = 1.;
        r.imag = 0.;
    }
    else if (a.real == 0. && a.imag == 0.) {
        if (b.imag != 0. || b.real < 0.)
            errno = EDOM;
        r.real = 0.;
        r.imag = 0.;
    }
    else {
        vabs = hypot(a.real,a.imag);
        len = pow(vabs,b.real);
        at = atan2(a.imag, a.real);
        phase = at*b.real;
        if (b.imag != 0.0) {
            len /= exp(at*b.imag);
            phase += b.imag*log(vabs);
        }
        r.real = len*cos(phase);
        r.imag = len*sin(phase);
    }
    return r;
133 134
}

135 136
static Py_complex
c_powu(Py_complex x, long n)
137
{
138 139 140 141 142 143 144 145 146 147 148
    Py_complex r, p;
    long mask = 1;
    r = c_1;
    p = x;
    while (mask > 0 && n >= mask) {
        if (n & mask)
            r = c_prod(r,p);
        mask <<= 1;
        p = c_prod(p,p);
    }
    return r;
149 150
}

151 152
static Py_complex
c_powi(Py_complex x, long n)
153
{
154 155 156 157 158 159 160 161 162 163 164
    Py_complex cn;

    if (n > 100 || n < -100) {
        cn.real = (double) n;
        cn.imag = 0.;
        return c_pow(x,cn);
    }
    else if (n > 0)
        return c_powu(x,n);
    else
        return c_quot(c_1,c_powu(x,-n));
165 166 167

}

168 169 170
double
c_abs(Py_complex z)
{
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    /* sets errno = ERANGE on overflow;  otherwise errno = 0 */
    double result;

    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
        /* C99 rules: if either the real or the imaginary part is an
           infinity, return infinity, even if the other part is a
           NaN. */
        if (Py_IS_INFINITY(z.real)) {
            result = fabs(z.real);
            errno = 0;
            return result;
        }
        if (Py_IS_INFINITY(z.imag)) {
            result = fabs(z.imag);
            errno = 0;
            return result;
        }
        /* either the real or imaginary part is a NaN,
           and neither is infinite. Result should be NaN. */
        return Py_NAN;
    }
    result = hypot(z.real, z.imag);
    if (!Py_IS_FINITE(result))
        errno = ERANGE;
    else
        errno = 0;
    return result;
198 199
}

200 201 202
static PyObject *
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
{
203
    PyObject *op;
204

205 206 207 208
    op = type->tp_alloc(type, 0);
    if (op != NULL)
        ((PyComplexObject *)op)->cval = cval;
    return op;
209 210
}

211
PyObject *
212
PyComplex_FromCComplex(Py_complex cval)
213
{
214 215 216 217 218 219 220 221 222
    register PyComplexObject *op;

    /* Inline PyObject_New */
    op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
    if (op == NULL)
        return PyErr_NoMemory();
    PyObject_INIT(op, &PyComplex_Type);
    op->cval = cval;
    return (PyObject *) op;
223 224
}

225 226 227
static PyObject *
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
{
228 229 230 231
    Py_complex c;
    c.real = real;
    c.imag = imag;
    return complex_subtype_from_c_complex(type, c);
232 233
}

234
PyObject *
235
PyComplex_FromDoubles(double real, double imag)
236
{
237 238 239 240
    Py_complex c;
    c.real = real;
    c.imag = imag;
    return PyComplex_FromCComplex(c);
241 242 243
}

double
244
PyComplex_RealAsDouble(PyObject *op)
245
{
246 247 248 249 250 251
    if (PyComplex_Check(op)) {
        return ((PyComplexObject *)op)->cval.real;
    }
    else {
        return PyFloat_AsDouble(op);
    }
252 253 254
}

double
255
PyComplex_ImagAsDouble(PyObject *op)
256
{
257 258 259 260 261 262
    if (PyComplex_Check(op)) {
        return ((PyComplexObject *)op)->cval.imag;
    }
    else {
        return 0.0;
    }
263 264
}

265 266
static PyObject *
try_complex_special_method(PyObject *op) {
267 268 269 270 271 272 273 274 275 276
    PyObject *f;
    static PyObject *complexstr;

    f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
    if (f) {
        PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
        Py_DECREF(f);
        return res;
    }
    return NULL;
277 278
}

Guido van Rossum's avatar
Guido van Rossum committed
279
Py_complex
280
PyComplex_AsCComplex(PyObject *op)
281
{
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    Py_complex cv;
    PyObject *newop = NULL;

    assert(op);
    /* If op is already of type PyComplex_Type, return its value */
    if (PyComplex_Check(op)) {
        return ((PyComplexObject *)op)->cval;
    }
    /* If not, use op's __complex__  method, if it exists */

    /* return -1 on failure */
    cv.real = -1.;
    cv.imag = 0.;

    newop = try_complex_special_method(op);

    if (newop) {
        if (!PyComplex_Check(newop)) {
            PyErr_SetString(PyExc_TypeError,
                "__complex__ should return a complex object");
            Py_DECREF(newop);
            return cv;
        }
        cv = ((PyComplexObject *)newop)->cval;
        Py_DECREF(newop);
        return cv;
    }
    else if (PyErr_Occurred()) {
        return cv;
    }
    /* If neither of the above works, interpret op as a float giving the
       real part of the result, and fill in the imaginary part as 0. */
    else {
        /* PyFloat_AsDouble will return -1 on failure */
        cv.real = PyFloat_AsDouble(op);
        return cv;
    }
319 320
}

321
static void
322
complex_dealloc(PyObject *op)
323
{
324
    op->ob_type->tp_free(op);
325 326
}

327
static PyObject *
328
complex_repr(PyComplexObject *v)
329
{
330 331
    int precision = 0;
    char format_code = 'r';
332 333 334 335 336 337 338 339 340 341 342 343 344 345
    PyObject *result = NULL;

    /* If these are non-NULL, they'll need to be freed. */
    char *pre = NULL;
    char *im = NULL;

    /* These do not need to be freed. re is either an alias
       for pre or a pointer to a constant.  lead and tail
       are pointers to constants. */
    char *re = NULL;
    char *lead = "";
    char *tail = "";

    if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
346 347
        /* Real part is +0: just output the imaginary part and do not
           include parens. */
348 349 350 351 352 353 354 355
        re = "";
        im = PyOS_double_to_string(v->cval.imag, format_code,
                                   precision, 0, NULL);
        if (!im) {
            PyErr_NoMemory();
            goto done;
        }
    } else {
356 357
        /* Format imaginary part with sign, real part without. Include
           parens in the result. */
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        pre = PyOS_double_to_string(v->cval.real, format_code,
                                    precision, 0, NULL);
        if (!pre) {
            PyErr_NoMemory();
            goto done;
        }
        re = pre;

        im = PyOS_double_to_string(v->cval.imag, format_code,
                                   precision, Py_DTSF_SIGN, NULL);
        if (!im) {
            PyErr_NoMemory();
            goto done;
        }
        lead = "(";
        tail = ")";
    }
375
    result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
376
  done:
377 378
    PyMem_Free(im);
    PyMem_Free(pre);
379

380
    return result;
381 382
}

383
static Py_hash_t
384
complex_hash(PyComplexObject *v)
385
{
386 387 388
    Py_uhash_t hashreal, hashimag, combined;
    hashreal = (Py_uhash_t)_Py_HashDouble(v->cval.real);
    if (hashreal == (Py_uhash_t)-1)
389
        return -1;
390 391
    hashimag = (Py_uhash_t)_Py_HashDouble(v->cval.imag);
    if (hashimag == (Py_uhash_t)-1)
392 393 394 395 396 397 398
        return -1;
    /* Note:  if the imaginary part is 0, hashimag is 0 now,
     * so the following returns hashreal unchanged.  This is
     * important because numbers of different types that
     * compare equal must have the same hash value, so that
     * hash(x + 0*j) must equal hash(x).
     */
399
    combined = hashreal + _PyHASH_IMAG * hashimag;
400 401
    if (combined == (Py_uhash_t)-1)
        combined = (Py_uhash_t)-2;
402
    return (Py_hash_t)combined;
403 404
}

405 406
/* This macro may return! */
#define TO_COMPLEX(obj, c) \
407 408 409 410
    if (PyComplex_Check(obj)) \
        c = ((PyComplexObject *)(obj))->cval; \
    else if (to_complex(&(obj), &(c)) < 0) \
        return (obj)
411 412 413 414

static int
to_complex(PyObject **pobj, Py_complex *pc)
{
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    PyObject *obj = *pobj;

    pc->real = pc->imag = 0.0;
    if (PyLong_Check(obj)) {
        pc->real = PyLong_AsDouble(obj);
        if (pc->real == -1.0 && PyErr_Occurred()) {
            *pobj = NULL;
            return -1;
        }
        return 0;
    }
    if (PyFloat_Check(obj)) {
        pc->real = PyFloat_AsDouble(obj);
        return 0;
    }
    Py_INCREF(Py_NotImplemented);
    *pobj = Py_NotImplemented;
    return -1;
433
}
434

435

436
static PyObject *
437
complex_add(PyObject *v, PyObject *w)
438
{
439 440 441 442 443 444 445 446
    Py_complex result;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    PyFPE_START_PROTECT("complex_add", return 0)
    result = c_sum(a, b);
    PyFPE_END_PROTECT(result)
    return PyComplex_FromCComplex(result);
447 448
}

449
static PyObject *
450
complex_sub(PyObject *v, PyObject *w)
451
{
452 453 454 455 456 457 458 459
    Py_complex result;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    PyFPE_START_PROTECT("complex_sub", return 0)
    result = c_diff(a, b);
    PyFPE_END_PROTECT(result)
    return PyComplex_FromCComplex(result);
460 461
}

462
static PyObject *
463
complex_mul(PyObject *v, PyObject *w)
464
{
465 466 467 468 469 470 471 472
    Py_complex result;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    PyFPE_START_PROTECT("complex_mul", return 0)
    result = c_prod(a, b);
    PyFPE_END_PROTECT(result)
    return PyComplex_FromCComplex(result);
473 474
}

475
static PyObject *
476
complex_div(PyObject *v, PyObject *w)
477
{
478 479 480 481 482 483 484 485 486 487 488 489 490
    Py_complex quot;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    PyFPE_START_PROTECT("complex_div", return 0)
    errno = 0;
    quot = c_quot(a, b);
    PyFPE_END_PROTECT(quot)
    if (errno == EDOM) {
        PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
        return NULL;
    }
    return PyComplex_FromCComplex(quot);
491 492
}

493
static PyObject *
494
complex_remainder(PyObject *v, PyObject *w)
495
{
496 497 498
    PyErr_SetString(PyExc_TypeError,
                    "can't mod complex numbers.");
    return NULL;
499 500 501
}


502
static PyObject *
503
complex_divmod(PyObject *v, PyObject *w)
504
{
505 506 507
    PyErr_SetString(PyExc_TypeError,
                    "can't take floor or mod of complex number.");
    return NULL;
508
}
509

510
static PyObject *
511
complex_pow(PyObject *v, PyObject *w, PyObject *z)
512
{
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    Py_complex p;
    Py_complex exponent;
    long int_exponent;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);

    if (z != Py_None) {
        PyErr_SetString(PyExc_ValueError, "complex modulo");
        return NULL;
    }
    PyFPE_START_PROTECT("complex_pow", return 0)
    errno = 0;
    exponent = b;
    int_exponent = (long)exponent.real;
    if (exponent.imag == 0. && exponent.real == int_exponent)
        p = c_powi(a, int_exponent);
    else
        p = c_pow(a, exponent);

    PyFPE_END_PROTECT(p)
    Py_ADJUST_ERANGE2(p.real, p.imag);
    if (errno == EDOM) {
        PyErr_SetString(PyExc_ZeroDivisionError,
                        "0.0 to a negative or complex power");
        return NULL;
    }
    else if (errno == ERANGE) {
        PyErr_SetString(PyExc_OverflowError,
                        "complex exponentiation");
        return NULL;
    }
    return PyComplex_FromCComplex(p);
546 547
}

548
static PyObject *
549
complex_int_div(PyObject *v, PyObject *w)
550
{
551 552 553
    PyErr_SetString(PyExc_TypeError,
                    "can't take floor of complex number.");
    return NULL;
554 555
}

556
static PyObject *
557
complex_neg(PyComplexObject *v)
558
{
559 560 561 562
    Py_complex neg;
    neg.real = -v->cval.real;
    neg.imag = -v->cval.imag;
    return PyComplex_FromCComplex(neg);
563 564
}

565
static PyObject *
566
complex_pos(PyComplexObject *v)
567
{
568 569 570 571 572 573
    if (PyComplex_CheckExact(v)) {
        Py_INCREF(v);
        return (PyObject *)v;
    }
    else
        return PyComplex_FromCComplex(v->cval);
574 575
}

576
static PyObject *
577
complex_abs(PyComplexObject *v)
578
{
579 580 581 582 583 584 585 586 587 588 589 590
    double result;

    PyFPE_START_PROTECT("complex_abs", return 0)
    result = c_abs(v->cval);
    PyFPE_END_PROTECT(result)

    if (errno == ERANGE) {
        PyErr_SetString(PyExc_OverflowError,
                        "absolute value too large");
        return NULL;
    }
    return PyFloat_FromDouble(result);
591 592 593
}

static int
594
complex_bool(PyComplexObject *v)
595
{
596
    return v->cval.real != 0.0 || v->cval.imag != 0.0;
597 598
}

599 600 601
static PyObject *
complex_richcompare(PyObject *v, PyObject *w, int op)
{
602
    PyObject *res;
603 604
    Py_complex i;
    int equal;
605 606

    if (op != Py_EQ && op != Py_NE) {
607
        goto Unimplemented;
608 609
    }

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    assert(PyComplex_Check(v));
    TO_COMPLEX(v, i);

    if (PyLong_Check(w)) {
        /* Check for 0.0 imaginary part first to avoid the rich
         * comparison when possible.
         */
        if (i.imag == 0.0) {
            PyObject *j, *sub_res;
            j = PyFloat_FromDouble(i.real);
            if (j == NULL)
                return NULL;

            sub_res = PyObject_RichCompare(j, w, op);
            Py_DECREF(j);
            return sub_res;
        }
        else {
            equal = 0;
        }
    }
    else if (PyFloat_Check(w)) {
        equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
    }
    else if (PyComplex_Check(w)) {
        Py_complex j;

        TO_COMPLEX(w, j);
        equal = (i.real == j.real && i.imag == j.imag);
    }
    else {
        goto Unimplemented;
    }

    if (equal == (op == Py_EQ))
         res = Py_True;
646
    else
647
         res = Py_False;
648 649 650

    Py_INCREF(res);
    return res;
651 652

Unimplemented:
653
    Py_RETURN_NOTIMPLEMENTED;
654 655
}

656
static PyObject *
657
complex_int(PyObject *v)
658
{
659 660 661
    PyErr_SetString(PyExc_TypeError,
               "can't convert complex to int");
    return NULL;
662 663
}

664
static PyObject *
665
complex_float(PyObject *v)
666
{
667 668 669
    PyErr_SetString(PyExc_TypeError,
               "can't convert complex to float");
    return NULL;
670 671
}

672
static PyObject *
673
complex_conjugate(PyObject *self)
674
{
675 676 677 678
    Py_complex c;
    c = ((PyComplexObject *)self)->cval;
    c.imag = -c.imag;
    return PyComplex_FromCComplex(c);
679 680
}

681 682 683 684 685
PyDoc_STRVAR(complex_conjugate_doc,
"complex.conjugate() -> complex\n"
"\n"
"Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");

686 687 688
static PyObject *
complex_getnewargs(PyComplexObject *v)
{
689 690
    Py_complex c = v->cval;
    return Py_BuildValue("(dd)", c.real, c.imag);
691 692
}

693 694 695 696 697 698 699 700 701 702 703
PyDoc_STRVAR(complex__format__doc,
"complex.__format__() -> str\n"
"\n"
"Converts to a string according to format_spec.");

static PyObject *
complex__format__(PyObject* self, PyObject* args)
{
    PyObject *format_spec;

    if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
704
    return NULL;
705 706 707 708 709
    return _PyComplex_FormatAdvanced(self,
                                     PyUnicode_AS_UNICODE(format_spec),
                                     PyUnicode_GET_SIZE(format_spec));
}

710 711 712 713
#if 0
static PyObject *
complex_is_finite(PyObject *self)
{
714 715 716 717
    Py_complex c;
    c = ((PyComplexObject *)self)->cval;
    return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
                                  Py_IS_FINITE(c.imag)));
718 719 720 721 722 723 724 725
}

PyDoc_STRVAR(complex_is_finite_doc,
"complex.is_finite() -> bool\n"
"\n"
"Returns True if the real and the imaginary part is finite.");
#endif

726
static PyMethodDef complex_methods[] = {
727 728
    {"conjugate",       (PyCFunction)complex_conjugate, METH_NOARGS,
     complex_conjugate_doc},
729
#if 0
730 731
    {"is_finite",       (PyCFunction)complex_is_finite, METH_NOARGS,
     complex_is_finite_doc},
732
#endif
733 734 735 736
    {"__getnewargs__",          (PyCFunction)complex_getnewargs,        METH_NOARGS},
    {"__format__",          (PyCFunction)complex__format__,
                                       METH_VARARGS, complex__format__doc},
    {NULL,              NULL}           /* sentinel */
737 738
};

739
static PyMemberDef complex_members[] = {
740 741 742 743 744
    {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
     "the real part of a complex number"},
    {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
     "the imaginary part of a complex number"},
    {0},
745
};
746

747
static PyObject *
748 749
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
{
750 751 752 753
    const char *s, *start;
    char *end;
    double x=0.0, y=0.0, z;
    int got_bracket=0;
754
    PyObject *s_buffer = NULL;
755 756 757
    Py_ssize_t len;

    if (PyUnicode_Check(v)) {
758 759 760 761
        Py_ssize_t i, buflen = PyUnicode_GET_SIZE(v);
        Py_UNICODE *bufptr;
        s_buffer = PyUnicode_TransformDecimalToASCII(
            PyUnicode_AS_UNICODE(v), buflen);
762
        if (s_buffer == NULL)
763 764 765 766 767 768 769 770 771 772
            return NULL;
        /* Replace non-ASCII whitespace with ' ' */
        bufptr = PyUnicode_AS_UNICODE(s_buffer);
        for (i = 0; i < buflen; i++) {
            Py_UNICODE ch = bufptr[i];
            if (ch > 127 && Py_UNICODE_ISSPACE(ch))
                bufptr[i] = ' ';
        }
        s = _PyUnicode_AsStringAndSize(s_buffer, &len);
        if (s == NULL)
773 774 775 776
            goto error;
    }
    else if (PyObject_AsCharBuffer(v, &s, &len)) {
        PyErr_SetString(PyExc_TypeError,
777
                        "complex() argument must be a string or a number");
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
        return NULL;
    }

    /* position on first nonblank */
    start = s;
    while (Py_ISSPACE(*s))
        s++;
    if (*s == '(') {
        /* Skip over possible bracket from repr(). */
        got_bracket = 1;
        s++;
        while (Py_ISSPACE(*s))
            s++;
    }

    /* a valid complex string usually takes one of the three forms:

         <float>                  - real part only
         <float>j                 - imaginary part only
         <float><signed-float>j   - real and imaginary parts

       where <float> represents any numeric string that's accepted by the
       float constructor (including 'nan', 'inf', 'infinity', etc.), and
       <signed-float> is any string of the form <float> whose first
       character is '+' or '-'.

       For backwards compatibility, the extra forms

         <float><sign>j
         <sign>j
         j

       are also accepted, though support for these forms may be removed from
       a future version of Python.
    */

    /* first look for forms starting with <float> */
    z = PyOS_string_to_double(s, &end, NULL);
    if (z == -1.0 && PyErr_Occurred()) {
        if (PyErr_ExceptionMatches(PyExc_ValueError))
            PyErr_Clear();
        else
            goto error;
    }
    if (end != s) {
        /* all 4 forms starting with <float> land here */
        s = end;
        if (*s == '+' || *s == '-') {
            /* <float><signed-float>j | <float><sign>j */
            x = z;
            y = PyOS_string_to_double(s, &end, NULL);
            if (y == -1.0 && PyErr_Occurred()) {
                if (PyErr_ExceptionMatches(PyExc_ValueError))
                    PyErr_Clear();
                else
                    goto error;
            }
            if (end != s)
                /* <float><signed-float>j */
                s = end;
            else {
                /* <float><sign>j */
                y = *s == '+' ? 1.0 : -1.0;
                s++;
            }
            if (!(*s == 'j' || *s == 'J'))
                goto parse_error;
            s++;
        }
        else if (*s == 'j' || *s == 'J') {
            /* <float>j */
            s++;
            y = z;
        }
        else
            /* <float> */
            x = z;
    }
    else {
        /* not starting with <float>; must be <sign>j or j */
        if (*s == '+' || *s == '-') {
            /* <sign>j */
            y = *s == '+' ? 1.0 : -1.0;
            s++;
        }
        else
            /* j */
            y = 1.0;
        if (!(*s == 'j' || *s == 'J'))
            goto parse_error;
        s++;
    }

    /* trailing whitespace and closing bracket */
    while (Py_ISSPACE(*s))
        s++;
    if (got_bracket) {
        /* if there was an opening parenthesis, then the corresponding
           closing parenthesis should be right here */
        if (*s != ')')
            goto parse_error;
        s++;
        while (Py_ISSPACE(*s))
            s++;
    }

    /* we should now be at the end of the string */
    if (s-start != len)
        goto parse_error;

888
    Py_XDECREF(s_buffer);
889
    return complex_subtype_from_doubles(type, x, y);
890

891
  parse_error:
892 893
    PyErr_SetString(PyExc_ValueError,
                    "complex() arg is a malformed string");
894
  error:
895
    Py_XDECREF(s_buffer);
896
    return NULL;
897 898 899 900 901
}

static PyObject *
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    PyObject *r, *i, *tmp;
    PyNumberMethods *nbr, *nbi = NULL;
    Py_complex cr, ci;
    int own_r = 0;
    int cr_is_complex = 0;
    int ci_is_complex = 0;
    static char *kwlist[] = {"real", "imag", 0};

    r = Py_False;
    i = NULL;
    if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
                                     &r, &i))
        return NULL;

    /* Special-case for a single argument when type(arg) is complex. */
    if (PyComplex_CheckExact(r) && i == NULL &&
        type == &PyComplex_Type) {
        /* Note that we can't know whether it's safe to return
           a complex *subclass* instance as-is, hence the restriction
           to exact complexes here.  If either the input or the
           output is a complex subclass, it will be handled below
           as a non-orthogonal vector.  */
        Py_INCREF(r);
        return r;
    }
    if (PyUnicode_Check(r)) {
        if (i != NULL) {
            PyErr_SetString(PyExc_TypeError,
                            "complex() can't take second arg"
                            " if first is a string");
            return NULL;
        }
        return complex_subtype_from_string(type, r);
    }
    if (i != NULL && PyUnicode_Check(i)) {
        PyErr_SetString(PyExc_TypeError,
                        "complex() second arg can't be a string");
        return NULL;
    }

    tmp = try_complex_special_method(r);
    if (tmp) {
        r = tmp;
        own_r = 1;
    }
    else if (PyErr_Occurred()) {
        return NULL;
    }

    nbr = r->ob_type->tp_as_number;
    if (i != NULL)
        nbi = i->ob_type->tp_as_number;
    if (nbr == NULL || nbr->nb_float == NULL ||
        ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
        PyErr_SetString(PyExc_TypeError,
                   "complex() argument must be a string or a number");
        if (own_r) {
            Py_DECREF(r);
        }
        return NULL;
    }

    /* If we get this far, then the "real" and "imag" parts should
       both be treated as numbers, and the constructor should return a
       complex number equal to (real + imag*1j).

       Note that we do NOT assume the input to already be in canonical
       form; the "real" and "imag" parts might themselves be complex
       numbers, which slightly complicates the code below. */
    if (PyComplex_Check(r)) {
        /* Note that if r is of a complex subtype, we're only
           retaining its real & imag parts here, and the return
           value is (properly) of the builtin complex type. */
        cr = ((PyComplexObject*)r)->cval;
        cr_is_complex = 1;
        if (own_r) {
            Py_DECREF(r);
        }
    }
    else {
        /* The "real" part really is entirely real, and contributes
           nothing in the imaginary direction.
           Just treat it as a double. */
        tmp = PyNumber_Float(r);
        if (own_r) {
            /* r was a newly created complex number, rather
               than the original "real" argument. */
            Py_DECREF(r);
        }
        if (tmp == NULL)
            return NULL;
        if (!PyFloat_Check(tmp)) {
            PyErr_SetString(PyExc_TypeError,
                            "float(r) didn't return a float");
            Py_DECREF(tmp);
            return NULL;
        }
        cr.real = PyFloat_AsDouble(tmp);
        cr.imag = 0.0; /* Shut up compiler warning */
        Py_DECREF(tmp);
    }
    if (i == NULL) {
        ci.real = 0.0;
    }
    else if (PyComplex_Check(i)) {
        ci = ((PyComplexObject*)i)->cval;
        ci_is_complex = 1;
    } else {
        /* The "imag" part really is entirely imaginary, and
           contributes nothing in the real direction.
           Just treat it as a double. */
        tmp = (*nbi->nb_float)(i);
        if (tmp == NULL)
            return NULL;
        ci.real = PyFloat_AsDouble(tmp);
        Py_DECREF(tmp);
    }
    /*  If the input was in canonical form, then the "real" and "imag"
        parts are real numbers, so that ci.imag and cr.imag are zero.
        We need this correction in case they were not real numbers. */

    if (ci_is_complex) {
        cr.real -= ci.imag;
    }
    if (cr_is_complex) {
        ci.real += cr.imag;
    }
    return complex_subtype_from_doubles(type, cr.real, ci.real);
1030 1031
}

1032
PyDoc_STRVAR(complex_doc,
1033 1034 1035
"complex(real[, imag]) -> complex number\n"
"\n"
"Create a complex number from a real part and an optional imaginary part.\n"
1036
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
1037

1038
static PyNumberMethods complex_as_number = {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    (binaryfunc)complex_add,                    /* nb_add */
    (binaryfunc)complex_sub,                    /* nb_subtract */
    (binaryfunc)complex_mul,                    /* nb_multiply */
    (binaryfunc)complex_remainder,              /* nb_remainder */
    (binaryfunc)complex_divmod,                 /* nb_divmod */
    (ternaryfunc)complex_pow,                   /* nb_power */
    (unaryfunc)complex_neg,                     /* nb_negative */
    (unaryfunc)complex_pos,                     /* nb_positive */
    (unaryfunc)complex_abs,                     /* nb_absolute */
    (inquiry)complex_bool,                      /* nb_bool */
    0,                                          /* nb_invert */
    0,                                          /* nb_lshift */
    0,                                          /* nb_rshift */
    0,                                          /* nb_and */
    0,                                          /* nb_xor */
    0,                                          /* nb_or */
    complex_int,                                /* nb_int */
    0,                                          /* nb_reserved */
    complex_float,                              /* nb_float */
    0,                                          /* nb_inplace_add */
    0,                                          /* nb_inplace_subtract */
    0,                                          /* nb_inplace_multiply*/
    0,                                          /* nb_inplace_remainder */
    0,                                          /* nb_inplace_power */
    0,                                          /* nb_inplace_lshift */
    0,                                          /* nb_inplace_rshift */
    0,                                          /* nb_inplace_and */
    0,                                          /* nb_inplace_xor */
    0,                                          /* nb_inplace_or */
    (binaryfunc)complex_int_div,                /* nb_floor_divide */
    (binaryfunc)complex_div,                    /* nb_true_divide */
    0,                                          /* nb_inplace_floor_divide */
    0,                                          /* nb_inplace_true_divide */
1072 1073
};

1074
PyTypeObject PyComplex_Type = {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "complex",
    sizeof(PyComplexObject),
    0,
    complex_dealloc,                            /* tp_dealloc */
    0,                                          /* tp_print */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_reserved */
    (reprfunc)complex_repr,                     /* tp_repr */
    &complex_as_number,                         /* tp_as_number */
    0,                                          /* tp_as_sequence */
    0,                                          /* tp_as_mapping */
    (hashfunc)complex_hash,                     /* tp_hash */
    0,                                          /* tp_call */
1090
    (reprfunc)complex_repr,                     /* tp_str */
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
    complex_doc,                                /* tp_doc */
    0,                                          /* tp_traverse */
    0,                                          /* tp_clear */
    complex_richcompare,                        /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    0,                                          /* tp_iter */
    0,                                          /* tp_iternext */
    complex_methods,                            /* tp_methods */
    complex_members,                            /* tp_members */
    0,                                          /* tp_getset */
    0,                                          /* tp_base */
    0,                                          /* tp_dict */
    0,                                          /* tp_descr_get */
    0,                                          /* tp_descr_set */
    0,                                          /* tp_dictoffset */
    0,                                          /* tp_init */
    PyType_GenericAlloc,                        /* tp_alloc */
    complex_new,                                /* tp_new */
    PyObject_Del,                               /* tp_free */
1114
};